Skip to main content
This website uses cookies to ensure you get the best experience. By continuing to use this site, you agree to the use of cookies.

Please note: Your browser does not support the features used on Addgene's website. You may not be able to create an account or request plasmids through this website until you upgrade your browser. Learn more

Please note: Your browser does not fully support some of the features used on Addgene's website. If you run into any problems registering, depositing, or ordering please contact us at [email protected] Learn more

pY010 (pcDNA3.1-hAsCpf1) Citations (33)

Plasmid Article: Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System.
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F Cell. 2015 Sep 23. pii: S0092-8674(15)01200-3. doi: 10.1016/j.cell.2015.09.038.
PubMed Journal

Articles Citing pY010 (pcDNA3.1-hAsCpf1)

Articles
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK. Nat Biotechnol. 2016 Jun 27. doi: 10.1038/nbt.3620. PubMed

Associated Plasmids

Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Port F, Bullock SL. Nat Methods. 2016 Oct;13(10):852-4. doi: 10.1038/nmeth.3972. Epub 2016 Sep 5. PubMed

Associated Plasmids

Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Toth E, Weinhardt N, Bencsura P, Huszar K, Kulcsar PI, Talas A, Fodor E, Welker E. Biol Direct. 2016 Sep 14;11:46. doi: 10.1186/s13062-016-0147-0. PubMed

Associated Plasmids

In vivo high-throughput profiling of CRISPR-Cpf1 activity. Kim HK, Song M, Lee J, Menon AV, Jung S, Kang YM, Choi JW, Woo E, Koh HC, Nam JW, Kim H. Nat Methods. 2016 Dec 19. doi: 10.1038/nmeth.4104. PubMed

Associated Plasmids

Highly-Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection. Watkins-Chow DE, Varshney GK, Garrett LJ, Chen Z, Jimenez EA, Rivas C, Bishop KS, Sood R, Harper UL, Pavan WJ, Burgess SM. G3 (Bethesda). 2016 Dec 30. pii: g3.116.038091. doi: 10.1534/g3.116.038091. PubMed
Marker-free coselection for CRISPR-driven genome editing in human cells. Agudelo D, Duringer A, Bozoyan L, Huard CC, Carter S, Loehr J, Synodinou D, Drouin M, Salsman J, Dellaire G, Laganiere J, Doyon Y. Nat Methods. 2017 Apr 17. doi: 10.1038/nmeth.4265. PubMed

Associated Plasmids

CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN. Sci Adv. 2017 Apr 12;3(4):e1602814. doi: 10.1126/sciadv.1602814. eCollection 2017 Apr. PubMed
Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Zhong G, Wang H, Li Y, Tran MH, Farzan M. Nat Chem Biol. 2017 Aug;13(8):839-841. doi: 10.1038/nchembio.2410. Epub 2017 Jun 19. PubMed
Targeted Disruption of V600E-Mutant BRAF Gene by CRISPR-Cpf1. Yang M, Wei H, Wang Y, Deng J, Tang Y, Zhou L, Guo G, Tong A. Mol Ther Nucleic Acids. 2017 Sep 15;8:450-458. doi: 10.1016/j.omtn.2017.05.009. Epub 2017 May 17. PubMed
dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. O'Geen H, Ren C, Nicolet CM, Perez AA, Halmai J, Le VM, Mackay JP, Farnham PJ, Segal DJ. Nucleic Acids Res. 2017 Sep 29;45(17):9901-9916. doi: 10.1093/nar/gkx578. PubMed

Associated Plasmids

Enhanced Genome Editing Tools For Multi-Gene Deletion Knock-Out Approaches Using Paired CRISPR sgRNAs in CHO Cells. Schmieder V, Bydlinski N, Strasser R, Baumann M, Kildegaard HF, Jadhav V, Borth N. Biotechnol J. 2018 Mar;13(3):e1700211. doi: 10.1002/biot.201700211. Epub 2017 Nov 13. PubMed
A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D, Xi H, Xue D, Liu Q, Zhao J, Gao C, Song Z, Qu J, Gu F. Nucleic Acids Res. 2017 Nov 2;45(19):11295-11304. doi: 10.1093/nar/gkx783. PubMed
Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Kleinjan DA, Wardrope C, Nga Sou S, Rosser SJ. Nat Commun. 2017 Oct 30;8(1):1191. doi: 10.1038/s41467-017-01222-y. PubMed
Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Kweon J, Jang AH, Kim DE, Yang JW, Yoon M, Rim Shin H, Kim JS, Kim Y. Nat Commun. 2017 Nov 23;8(1):1723. doi: 10.1038/s41467-017-01650-w. PubMed
Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Ferenczi A, Pyott DE, Xipnitou A, Molnar A. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13567-13572. doi: 10.1073/pnas.1710597114. Epub 2017 Dec 5. PubMed
Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes. Neggers JE, Kwanten B, Dierckx T, Noguchi H, Voet A, Bral L, Minner K, Massant B, Kint N, Delforge M, Vercruysse T, Baloglu E, Senapedis W, Jacquemyn M, Daelemans D. Nat Commun. 2018 Feb 5;9(1):502. doi: 10.1038/s41467-017-02349-8. PubMed
Delineation of the Exact Transcription Termination Signal for Type 3 Polymerase III. Gao Z, Herrera-Carrillo E, Berkhout B. Mol Ther Nucleic Acids. 2018 Mar 2;10:36-44. doi: 10.1016/j.omtn.2017.11.006. Epub 2017 Nov 21. PubMed
Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, Zeng B, Li Z, Sun Q, Wu Y, Liu X, Wu L, Liang D. Hum Gene Ther. 2018 Nov;29(11):1252-1263. doi: 10.1089/hum.2017.255. Epub 2018 May 9. PubMed
Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing. Li B, Zeng C, Dong Y. Nat Protoc. 2018 May;13(5):899-914. doi: 10.1038/nprot.2018.004. Epub 2018 Apr 5. PubMed
Generation of the Adenovirus Vector-Mediated CRISPR/Cpf1 System and the Application for Primary Human Hepatocytes Prepared from Humanized Mice with Chimeric Liver. Tsukamoto T, Sakai E, Iizuka S, Taracena-Gandara M, Sakurai F, Mizuguchi H. Biol Pharm Bull. 2018;41(7):1089-1095. doi: 10.1248/bpb.b18-00222. PubMed
Discovery of widespread Type I and Type V CRISPR-Cas inhibitors. Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, Rauch BJ, Walton RT, Berry JD, Joung JK, Kleinstiver BP, Bondy-Denomy J. Science. 2018 Sep 6. pii: science.aau5174. doi: 10.1126/science.aau5174. PubMed

Associated Plasmids

Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Bin Moon S, Lee JM, Kang JG, Lee NE, Ha DI, Kim DY, Kim SH, Yoo K, Kim D, Ko JH, Kim YS. Nat Commun. 2018 Sep 7;9(1):3651. doi: 10.1038/s41467-018-06129-w. PubMed
Engineering the Direct Repeat Sequence of crRNA for Optimization of FnCpf1-Mediated Genome Editing in Human Cells. Lin L, He X, Zhao T, Gu L, Liu Y, Liu X, Liu H, Yang F, Tu M, Tang L, Ge X, Liu C, Zhao J, Song Z, Qu J, Gu F. Mol Ther. 2018 Nov 7;26(11):2650-2657. doi: 10.1016/j.ymthe.2018.08.021. Epub 2018 Sep 1. PubMed
Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA. Gao Z, Herrera-Carrillo E, Berkhout B. RNA Biol. 2018;15(12):1458-1467. doi: 10.1080/15476286.2018.1551703. Epub 2018 Nov 29. PubMed
Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfo I, Maus MV, Pinello L, Aryee MJ, Joung JK. Nat Biotechnol. 2019 Feb 11. pii: 10.1038/s41587-018-0011-0. doi: 10.1038/s41587-018-0011-0. PubMed

Associated Plasmids

Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, Woo DC, Kim YH, Nam SY, Lee SW, Sung YH, Baek IJ. Sci Rep. 2019 Feb 22;9(1):2628. doi: 10.1038/s41598-019-38732-2. PubMed
Enhanced Cas12a editing in mammalian cells and zebrafish. Liu P, Luk K, Shin M, Idrizi F, Kwok S, Roscoe B, Mintzer E, Suresh S, Morrison K, Frazao JB, Bolukbasi MF, Ponnienselvan K, Luban J, Zhu LJ, Lawson ND, Wolfe SA. Nucleic Acids Res. 2019 Mar 20. pii: 5403491. doi: 10.1093/nar/gkz184. PubMed

Associated Plasmids

Assessment of Cas12a-mediated gene editing efficiency in plants. Bernabe-Orts JM, Casas-Rodrigo I, Minguet EG, Landolfi V, Garcia-Carpintero V, Gianoglio S, Vazquez-Vilar M, Granell A, Orzaez D. Plant Biotechnol J. 2019 Apr 5. doi: 10.1111/pbi.13113. PubMed
The Acidaminococcus sp. Cas12a nuclease recognizes GTTV and GCTV as non-canonical PAMs. Jacobsen T, Liao C, Beisel CL. FEMS Microbiol Lett. 2019 Apr 1;366(8). pii: 5475644. doi: 10.1093/femsle/fnz085. PubMed
Development of a Pde6b Gene Knockout Rat Model for Studies of Degenerative Retinal Diseases. Yeo JH, Jung BK, Lee H, Baek IJ, Sung YH, Shin HS, Kim HK, Seo KY, Lee JY. Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1519-1526. doi: 10.1167/iovs.18-25556. PubMed
Methods for Correction of the Single-Nucleotide Substitution c.840C>T in Exon 7 of the SMN2 Gene. Valetdinova KR, Ovechkina VS, Zakian SM. Biochemistry (Mosc). 2019 Sep;84(9):1074-1084. doi: 10.1134/S0006297919090104. PubMed
Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells. Tang L, Yang F, He X, Xie H, Liu X, Fu J, Xi H, Lu X, Liu C, Song Z, Qu J, Zhao J, Gu F. Cell Regen (Lond). 2019 Oct 28;8(2):44-50. doi: 10.1016/j.cr.2019.08.002. eCollection 2019 Dec. PubMed
Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations. Li P, Zhang L, Li Z, Xu C, Du X, Wu S. Cell Mol Life Sci. 2019 Dec 17. pii: 10.1007/s00018-019-03396-8. doi: 10.1007/s00018-019-03396-8. PubMed

If you have published an article using this plasmid, please email us at [email protected] to have your article added to this page.