

### Golden GATEway Cloning Kit

**Description:** The Golden GATEway cloning system combines Golden Gate and Multisite Gateway cloning for construction of complex plasmids in a predefined order. This system was specifically designed for generating transgenesis constructs, but is also suitable for creating fusion proteins, and can be used in many different model organisms.

More information can be found at: <u>http://www.addgene.org/cloning/goldengateway/wittbrodt/</u>

<u>Reference:</u> Golden GATEway cloning--a combinatorial approach to generate fusion and recombination constructs. Kirchmaier S, Lust K, Wittbrodt J. PLoS One. 2013 Oct 7;8(10):e76117. doi: 10.1371/journal.pone.0076117. PubMed ID: 24116091

Handling and Storage: Store glycerol stocks at -80°C and minimize freeze-thaw cycles. To access a plasmid, keep the plate on dry ice to prevent thawing. Using a sterile pipette tip, puncture the seal above an individual well and spread a portion of the glycerol stock onto an agar plate. To patch the hole, use sterile tape or a portion of a fresh aluminum seal.

<u>Note:</u> These plasmid constructs are being distributed to non-profit institutions for the purpose of basic research.

Please contact Addgene at <u>help@addgene.org</u> with any questions.



www.addgene.org

help@addgene.org

## Golden GATEway Cloning Kit

## Plate Map

|   | 1                  | 2                  | 3                  | 4                  | 5                  | 6                  |
|---|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Α | pGGEV_+1_Linker    | pGGEV1_Linker      | pGGEV_2_Linker     | pGGEV_3_Linker     | pGGEV_4_Linker     | pGGEV_5_Linker     |
| В | pGGEV_6'_Linker    | pGGEV_7'_Linker    | pGGEV_8'_Linker    | pGGEV_+1_XcmI-LacZ | pGGEV1_XcmI-LacZ   | pGGEV_2_XcmI-LacZ  |
| С | pGGEV_3'_XcmI-LacZ | pGGEV_4'_XcmI-LacZ | pGGEV_5'_XcmI-LacZ | pGGEV_6'_XcmI-LacZ | pGGEV_7'_XcmI-LacZ | pGGEV_8'_XcmI-LacZ |
| D | p3E_GGWDest-       | p3E_GGWDest+       | p5E_GGWDest-       | p5E_GGWDest+       | pME_GGWDest-       | pME_GGWDest+       |
| Ε |                    |                    |                    |                    |                    |                    |
| F |                    |                    |                    |                    |                    |                    |
| G |                    |                    |                    |                    |                    |                    |
| н |                    |                    |                    |                    |                    |                    |

| 7                 | 8                  | 9                          | 10                               | 11                | 12                 |
|-------------------|--------------------|----------------------------|----------------------------------|-------------------|--------------------|
| pGGEV_6_Linker    | pGGEV_7_Linker     | pGGEV_2'_Linker            | pGGEV_3'_Linker                  | pGGEV_4'_Linker   | pGGEV_5'_Linker    |
| pGGEV_3_XcmI-LacZ | pGGEV_4_XcmI-LacZ  | pGGEV_5_XcmI-LacZ          | pGGEV_6_XcmI-LacZ                | pGGEV_7_XcmI-LacZ | pGGEV_2'_XcmI-LacZ |
| pGGEV1_FRT_+1_OA- | pGGEV_3_FRT_+1_OA- | pGGEV_2_+nls-eGFP-HA+1_BK+ | pGGEV_4'_+nls-mCherry-Flag+1_BK+ | pGGW_SM_BgIII     | pGGW_SM_BamHI      |
| pGGDestSC-ATG     | pGGDestSC+ATG      |                            |                                  |                   |                    |
|                   |                    |                            |                                  |                   |                    |
|                   |                    |                            |                                  |                   |                    |
|                   |                    |                            |                                  |                   |                    |
|                   |                    |                            |                                  |                   |                    |

**Instructions:** To access a plasmid, keep the plate on dry ice to prevent thawing. Using a sterile pipette tip, puncture the seal above an individual well and spread a portion of the glycerol stock onto an agar plate. To patch the hole, use sterile tape or a portion of a fresh aluminum seal.

Please visit <u>http://www.addgene.org/cloning/goldengateway/wittbrodt/plate1/</u> for a list of the appropriate antibiotics for each plasmid.



# How to Cite your Addgene Plasmids in Future Publications (Save for reference)

These plasmids were created by your colleagues. Please acknowledge the Principal Investigator, cite the article in which they were created, and include Addgene in the Materials and Methods of your future publications.

### Information pertinent to your requested plasmids:

### Principal Investigator: Joachim Wittbrodt

Article Reference: Golden GATEway cloning--a combinatorial approach to generate fusion and recombination constructs. Kirchmaier S, Lust K, Wittbrodt J. PLoS One. 2013 Oct 7;8(10):e76117. doi: 10.1371/journal.pone.0076117. (PubMed ID: 24116091)

### Addgene: Golden GATEway Cloning Kit

If you have any questions about how to cite these plasmids, please contact Addgene at <u>help@addgene.org</u> or call (617) 225-9000.

Best wishes for many successful publications!



