Protocol: PCR of sgRNAs for Illumina sequencing

MATERIALS

- Ex Taq DNA polymerase (Clontech, RR001A)
- PCR plates
- P5 \& P7 primers (listed at the end)
- $70 \% \mathrm{EtOH}$
- AMPure purification system (Beckman Coulter, 63880)
- 96-well round bottom plate (Costar, 07-200-103)
- Magnet (e.g. Alpaqua, A0011322)

PROTOCOL

PCR set-up
Preferably, prepare mix inside a PCR hood, after cleaning the surface with DNase Away and $70 \% \mathrm{EtOH}$. If possible, we recommend setting up at least 4 parallel PCRs for a given sample. Final contents of each reaction:

- $10 \mu \mathrm{~L} \mathrm{10x}$ reaction buffer
- $8 \mu \mathrm{~L}$ dNTP
- $0.5 \mu \mathrm{~L}$ P5 primer mix, $100 \mu \mathrm{M}$
- $1.5 \mu \mathrm{~L}$ ExTaq polymerase
- up to $10 \mu \mathrm{~g}$ of genomic DNA or 200 ng of plasmid DNA
- $10 \mu \mathrm{~L}$ of P7 primer $5 \mu \mathrm{M}$
- up to $100 \mu \mathrm{~L}$ with water

1. Make a master mix of reaction buffer, dNTP, P5 primer mix, taq polymerase, and water. Aliquot into a PCR plate.
2. Add template DNA.
3. Add a unique P7 primer to barcode each individual reaction.

Thermal cycler parameters
Wait for block to reach $95^{\circ} \mathrm{C}$ before adding samples.

1. $95^{\circ} \mathrm{C}, 1$ minute
2. $95^{\circ} \mathrm{C} 30$ seconds (denaturation)
3. $53^{\circ} \mathrm{C} 30$ seconds (annealing)
4. $72^{\circ} \mathrm{C} 30$ seconds (extension)

Back to step 2, total of 28 cycles
5. $72^{\circ} \mathrm{C} 10$ minutes
6. $4^{\circ} \mathrm{C}$ forever

AMPure XP-PCR purification (recommended)

1. Pool PCR products into an eppendorf (15-30 $\mu \mathrm{L}$ per well is typically sufficient).
2. Distribute $100 \mu \mathrm{~L}$ of pooled products to a 96 -well round bottom plate
3. Resuspend the magnetic beads included in the AMPure XP reagent, add $100 \mu \mathrm{~L}$ of beads to each well
4. Mix thoroughly by pipetting up and down 5 times, try not to make bubbles, and incubate at room temperature for 5 minutes. This step binds PCR products 100 bp and larger to the magnetic beads. The color of the mixture should appear homogenous after mixing.
5. Place the reaction plate onto a magnet for 2 minutes to separate beads from the solution. Wait for the solution to clear or you see a brown ring around the perimeter of the well before proceeding to the next step.
6. Aspirate the cleared solution from the reaction plate and discard. This step must be performed while the reaction plate is situated on the magnet. Do not disturb the ring of separated magnetic beads.
7. Add $200 \mu \mathrm{~L}$ of 70% ethanol to each well and incubate for 30 seconds at room temperature; aspirate the ethanol and discard.
8. Repeat step 7 once more for a total of two ethanol washes.
9. Remove the plate from the magnet and dry plate for 1 minute and no longer than 4 minutes. A longer dry time (the bead ring appears cracked) will significantly decrease elution efficiency.
10. Add $50 \mu \mathrm{~L}$ of TE buffer to elute the PCR product (elution is rapid—approximately 30 seconds).
11. Place the plate back onto the magnet for ~ 2 minutes.
12. Remove the eluted product and store in an eppendorf. The sample is now ready to be sequenced.

Alternatively, standard gel extraction can be performed. If so, we recommend to isopropanol precipitate the sample post-extraction to remove contaminating guanidine isothiocyanate that is commonly used in gel extraction protocols, which obscures quantitation due to its absorbance at 230 nm .

PCR PRIMERS

A mix of P5 primers with stagger regions of different length is necessary to maintain sequence diversity across the flow-cell. A minimum of 8 primers is recommended. Typically, we mix all 8 primers together in one master mix of P5 primers and use that same mix in all wells.

P5/P7 flowcell attachment sequence
Illumina sequencing primer
Vector primer binding sequence
Stagger region / Barcode region
P5 primer for either vector:
5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT[s]T TGTGGAAAGGACGAAACACCG

P7 primer for use with lentiGuide (product size $=354 \mathrm{nt}$)
5'CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTT CCGATCTTCTACTATTCTTTCCCCTGCACTGT

P7 primer for use with lentiCRISPRv2 (product size = 285 nt)
5'CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTT CCGATCTCCAATTCCCACTCCTTTCAAGACCT

P5 primers	
Name	Sequence
P5 0 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTTTGTGGAAAGGACGAAACACCG
P5 2 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTCTTGTGGAAAGGACGAAACACCG
P5 3 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTGCTTGTGGAAAGGACGAAACACCG
P5 4 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTAGCTTGTGGAAAGGACGAAACACCG
P5 6 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTCAACTTGTGGAAAGGACGAAACACCG
P5 7nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTTGCACCTTGTGGAAAGGACGAAACACCG
P5 8nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTACGCAACTTGTGGAAAGGACGAAACACCG
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTGAAGACCCTTGTGGAAAGGACGAAACACCG

P7 barcode (index) sequences for all designs (NNNNNNNN)					
Well	Sequence to include in P7 primer, 5'-3'	Index read (rev comp of sequence)	Well	Sequence to include in P7 primer, 5'-3'	Index read (rev comp of sequence)
A01	CGGTTCAA	TTGAACCG	E01	TAACTCAA	TTGAGTTA
A02	GCTGGATT	AATCCAGC	E02	CGTGAGCC	GGCTCACG
A03	TAACTCGG	CCGAGTTA	E03	ATCAGAGG	ССТСTGAT
A04	TAACAGTT	AACTGTTA	E04	TATGGAGG	CCTCCATA
A05	ATACTCAA	TTGAGTAT	E05	GCGTTCAA	TTGAACGC
A06	GCTGAGAA	TTCTCAGC	E06	CGCAAGAA	TTCTTGCG
A07	ATTGGAGG	CCTCCAAT	E07	CGACAGCC	GGCTGTCG
A08	TAGTCTAA	TTAGACTA	E08	CGACTCGG	CCGAGTCG
A09	CGGTGACC	GGTCACCG	E09	TACAAGAA	TTCTTGTA
A10	TACAGAGG	CCTCTGTA	E10	CGCAGATT	AATCTGCG
A11	ATTGTCAA	TTGACAAT	E11	ATTGCTCC	GGAGCAAT
A12	TATGTCTT	AAGACATA	E12	GCACTCGG	CCGAGTGC
B01	ATTGGATT	AATCCAAT	F01	ATGTTCTT	AAGAACAT
B02	ATACTCGG	CCGAGTAT	F02	ATGTCTCC	GGAGACAT
B03	TATGAGAA	TTCTCATA	F03	GCACTCAA	TTGAGTGC
B04	GCACAGTT	AACTGTGC	F04	TAGTAGCC	GGCTACTA
B05	CGTGGATT	AATCCACG	F05	CGTGTCAA	TTGACACG
B06	TAGTAGAA	TTCTACTA	F06	GCGTTCTT	AAGAACGC
B07	GCACGATT	AATCGTGC	F07	GCCAAGCC	GGCTTGGC
B08	CGGTAGCC	GGCTACCG	F08	GCACCTCC	GGAGGTGC
B09	TAGTTCTT	AAGAACTA	F09	GCACCTGG	CCAGGTGC
B10	TACAAGTT	AACTTGTA	F10	GCCAGACC	GGTCTGGC
B11	ATCACTGG	CCAGTGAT	F11	CGCAAGCC	GGCTTGCG
B12	CGCATCAA	TTGATGCG	F12	TACATCAA	TTGATGTA

C01	GCACGACC	GGTCGTGC	G01	GCGTAGCC	GGCTACGC
C02	TACACTCC	GGAGTGTA	G02	CGACAGAA	TTCTGTCG
C03	CGGTCTAA	TTAGACCG	G03	TAGTCTGG	CCAGACTA
C04	ATGTTCGG	CCGAACAT	G04	ATCAAGTT	AACTTGAT
C05	CGTGGACC	GGTCCACG	G05	TAGTAGTT	AACTACTA
C06	ATTGAGCC	GGCTCAAT	G06	ATACTCTT	AGTTCGG

