Skip to main content
This website uses cookies to ensure you get the best experience. By continuing to use this site, you agree to the use of cookies.

Please note: Your browser does not support the features used on Addgene's website. You may not be able to create an account or request plasmids through this website until you upgrade your browser. Learn more

Please note: Your browser does not fully support some of the features used on Addgene's website. If you run into any problems registering, depositing, or ordering please contact us at [email protected]. Learn more

pSimple-miR302/367 Citations (8)

Originally described in: Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts.
Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA Stem Cell Reports. 2015 Dec 8;5(6):1109-18. doi: 10.1016/j.stemcr.2015.10.009. Epub 2015 Nov 12.
PubMed Journal

Articles Citing pSimple-miR302/367

Articles
Simultaneous reprogramming and gene editing of human fibroblasts. Howden SE, Thomson JA, Little MH. Nat Protoc. 2018 May;13(5):875-898. doi: 10.1038/nprot.2018.007. Epub 2018 Apr 5. PubMed
The use of simultaneous reprogramming and gene correction to generate an osteogenesis imperfecta patient COL1A1 c. 3936 G>T iPSC line and an isogenic control iPSC line. Howden S, Hosseini Far H, Motazedian A, Elefanty AG, Stanley EG, Lamande SR, Bateman JF. Stem Cell Res. 2019 Jul;38:101453. doi: 10.1016/j.scr.2019.101453. Epub 2019 May 4. PubMed
Tracking and Predicting Human Somatic Cell Reprogramming Using Nuclear Characteristics. Molugu K, Harkness T, Carlson-Stevermer J, Prestil R, Piscopo NJ, Seymour SK, Knight GT, Ashton RS, Saha K. Biophys J. 2019 Oct 22. pii: S0006-3495(19)30862-8. doi: 10.1016/j.bpj.2019.10.014. PubMed
Label-Free Imaging to Track Reprogramming of Human Somatic Cells. Molugu K, Battistini GA, Heaster TM, Rouw J, Guzman EC, Skala MC, Saha K. GEN Biotechnol. 2022 Apr 1;1(2):176-191. doi: 10.1089/genbio.2022.0001. Epub 2022 Apr 20. PubMed
Generation and Characterization of Novel iPSC Lines from a Portuguese Family Bearing Heterozygous and Homozygous GRN Mutations. Oliveira AR, Martins S, Cammarata G, Martins M, Cardoso AM, Almeida MR, do Carmo Macario M, Santana I, Peca J, Cardoso AL. Biomedicines. 2022 Aug 6;10(8):1905. doi: 10.3390/biomedicines10081905. PubMed
Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Perdigao PRL, Ollington B, Sai H, Leung A, Sacristan-Reviriego A, van der Spuy J. Int J Mol Sci. 2023 Mar 21;24(6):5912. doi: 10.3390/ijms24065912. PubMed
Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells. Baik J, Ortiz-Cordero C, Magli A, Azzag K, Crist SB, Yamashita A, Kiley J, Selvaraj S, Mondragon-Gonzalez R, Perrin E, Maufort JP, Janecek JL, Lee RM, Stone LH, Rangarajan P, Ramachandran S, Graham ML, Perlingeiro RCR. Cells. 2023 Apr 13;12(8):1147. doi: 10.3390/cells12081147. PubMed
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways. Zeng S, Yang H, Wang B, Xie Y, Xu K, Liu L, Cao W, Liu X, Tang B, Liu M, Zhang R. Neural Regen Res. 2024 Jan;19(1):205-211. doi: 10.4103/1673-5374.375347. PubMed

If you have published an article using this material, please email us at [email protected] to have your article added to this page.