Skip to main content
This website uses cookies to ensure you get the best experience. By continuing to use this site, you agree to the use of cookies.

Please note: Your browser does not support the features used on Addgene's website. You may not be able to create an account or request plasmids through this website until you upgrade your browser. Learn more

Please note: Your browser does not fully support some of the features used on Addgene's website. If you run into any problems registering, depositing, or ordering please contact us at [email protected]. Learn more

pUC57-LbNOX Citations (8)

Originally described in: Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
Titov DV, Cracan V, Goodman RP, Peng J, Grabarek Z, Mootha VK Science. 2016 Apr 8;352(6282):231-5. doi: 10.1126/science.aad4017. Epub 2016 Apr 7.
PubMed Journal

Articles Citing pUC57-LbNOX

Articles
Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. MacVicar T, Ohba Y, Nolte H, Mayer FC, Tatsuta T, Sprenger HG, Lindner B, Zhao Y, Li J, Bruns C, Kruger M, Habich M, Riemer J, Schwarzer R, Pasparakis M, Henschke S, Bruning JC, Zamboni N, Langer T. Nature. 2019 Nov;575(7782):361-365. doi: 10.1038/s41586-019-1738-6. Epub 2019 Nov 6. PubMed
Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Vardhana SA, Hwee MA, Berisa M, Wells DK, Yost KE, King B, Smith M, Herrera PS, Chang HY, Satpathy AT, van den Brink MRM, Cross JR, Thompson CB. Nat Immunol. 2020 Sep;21(9):1022-1033. doi: 10.1038/s41590-020-0725-2. Epub 2020 Jul 13. PubMed
Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, Thomas CJ, Spranger S, Matheson NJ, Vander Heiden MG. Mol Cell. 2021 Feb 18;81(4):691-707.e6. doi: 10.1016/j.molcel.2020.12.012. Epub 2020 Dec 30. PubMed
NADH inhibition of SIRT1 links energy state to transcription during time-restricted feeding. Levine DC, Kuo HY, Hong HK, Cedernaes J, Hepler C, Wright AG, Sommars MA, Kobayashi Y, Marcheva B, Gao P, Ilkayeva OR, Omura C, Ramsey KM, Newgard CB, Barish GD, Peek CB, Chandel NS, Mrksich M, Bass J. Nat Metab. 2021 Dec;3(12):1621-1632. doi: 10.1038/s42255-021-00498-1. Epub 2021 Dec 13. PubMed
Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells. Altea-Manzano P, Vandekeere A, Edwards-Hicks J, Roldan M, Abraham E, Lleshi X, Guerrieri AN, Berardi D, Wills J, Junior JM, Pantazi A, Acosta JC, Sanchez-Martin RM, Fendt SM, Martin-Hernandez M, Finch AJ. Mol Cell. 2022 Dec 1;82(23):4537-4547.e7. doi: 10.1016/j.molcel.2022.10.005. Epub 2022 Nov 2. PubMed
Identification of purine biosynthesis as an NADH-sensing pathway to mediate energy stress. Yang R, Yang C, Ma L, Zhao Y, Guo Z, Niu J, Chu Q, Ma Y, Li B. Nat Commun. 2022 Nov 17;13(1):7031. doi: 10.1038/s41467-022-34850-0. PubMed

Associated Plasmids

Metabolic regulation of species-specific developmental rates. Diaz-Cuadros M, Miettinen TP, Skinner OS, Sheedy D, Diaz-Garcia CM, Gapon S, Hubaud A, Yellen G, Manalis SR, Oldham WM, Pourquie O. Nature. 2023 Jan;613(7944):550-557. doi: 10.1038/s41586-022-05574-4. Epub 2023 Jan 4. PubMed
Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade. Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, Uribe AH, Shokry E, Young AL, Lilla S, Kim M, Park T, Manchon JL, Rodriguez-Antona C, Walters RC, Springett RJ, Blaza JN, Zanivan S, Sumpton D, Roberts EW, Reznik E, Gammage PA. bioRxiv. 2023 Mar 23:2023.03.21.533091. doi: 10.1101/2023.03.21.533091. Preprint. PubMed

If you have published an article using this material, please email us at [email protected] to have your article added to this page.